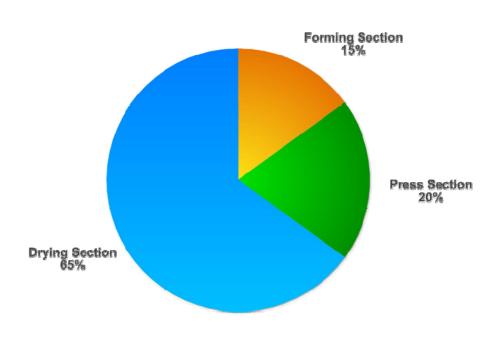


"How can a forming fabric reduce the energy consumption in the wet end"

Oliver Baumann
Stephan Ernst
Xerium Technologies, Inc


RETHINK PAPER: Lean and Green

- Description of the situation/target
- Laboratory trials
- New product development
- Field results
- Summary

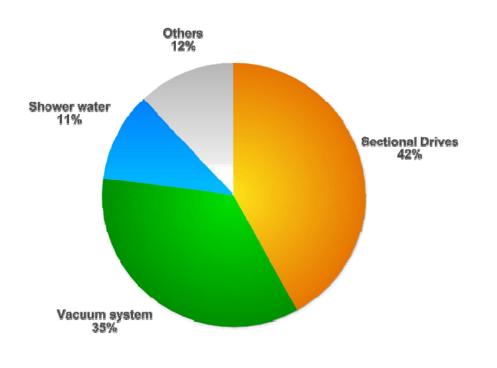


Energy consumption

Water removed

Energy used

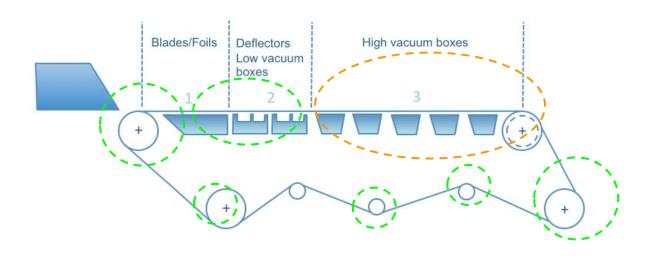
Source: Pöyry



Energy consumption Wet End

Energy used in Forming Fabric Section

 Main energy consumer are the vacuum pumps and energy used for the sectional drives (77% of the whole consumption)


Source: Pöyry

Affecting the Drive Load (42%)

- 20% energy consumption due to rolls, blades...
- 80% energy consumption due to high vacuum boxes

Concepts to reduce drive loads

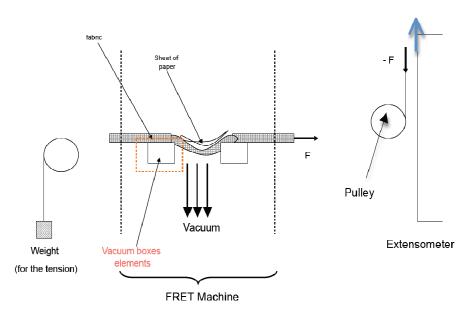
Fabric parameters influencing the drive load

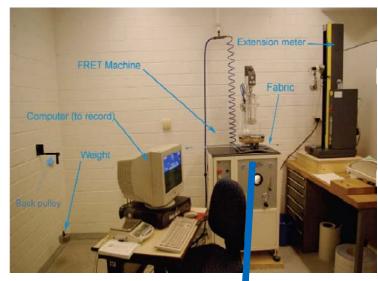
F₁ & F₂ is the force we need to reduce!

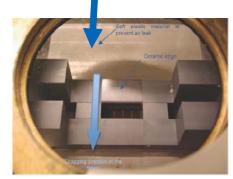
R_{N1}&_{N2}: reaction force of the applied vacuum

- Vacuum loads, dryness influences the thermical and electrical energy consumption
 - → Concepts to improve sheet built up, formation
 - → Concepts to improve the drainage
- Drive loads influence the electrical energy consumption
 - → Concepts to reduce drive loads

Description of the situation/target



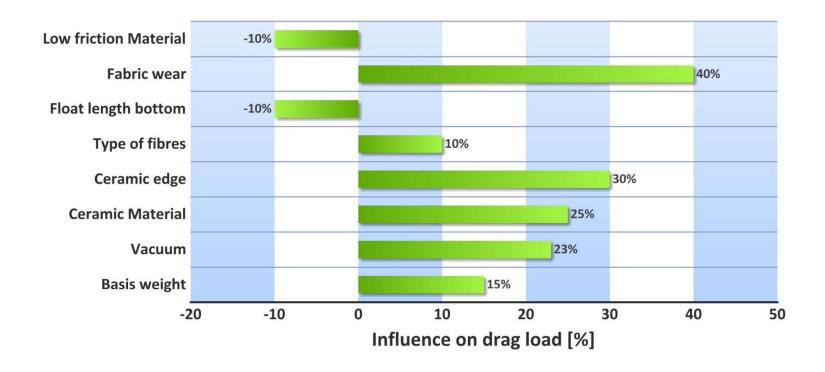

- Laboratory trials
- New product development
- Field results
- Summary


Concepts to reduce drive loads

Measuring method

Main specifications of the laboratory vacuum box	
Vacuum slot dimensions	18x50 mm
Edges material	Ceramic Si - Nitrid
Edges radius	2 mm
Tension	0,65 kN/m (5kg on 7,5cm width)
Real vacuum level	0,3 – 0,35 bar
Friction in the system	~ 1 – 3 N
Basis weight range	70 – 200 g/m ²

Consistency = 5 g/L; 0,5%



Energy consumption in the forming section

Measurement results / Lab device

■ Drag load difference in [%] of the specific drag load (KW/m @ 100m/min) for each parameter versus the reference forming fabric, ceramic material and paper grade, e.g. low friction material gave 10% lower specific drag load in this experiment.

Energy consumption in the forming section

What is influencing the energy level?

Parameter in order of importance

FF parameters with impact

- Vacuum loads, dryness
- Fabric wear bottom side float
- Ceramic edges
- Basis weight
- Yarn materials on the machine side
- Type of fibers
- Roughness of the fabric paper side and running side
- **■** Fabric Tension
- Speed
- Fiber orientation

- Surface Open Area/FSI/Perm
- Caliper
- Structure

FF mechanical properties:

- Structure/Stability
- Materials

Drive loads

Description of the situation/target

Laboratory trials

- New product development
- Field results
- Summary

Product develpoment

Lab testing

Focus on the initial drainage

The sheet structure has a significant impact on the drainage behavior of the web and hereby on the necessary dewatering forces, which directly impacts the vacuum.

Material combination

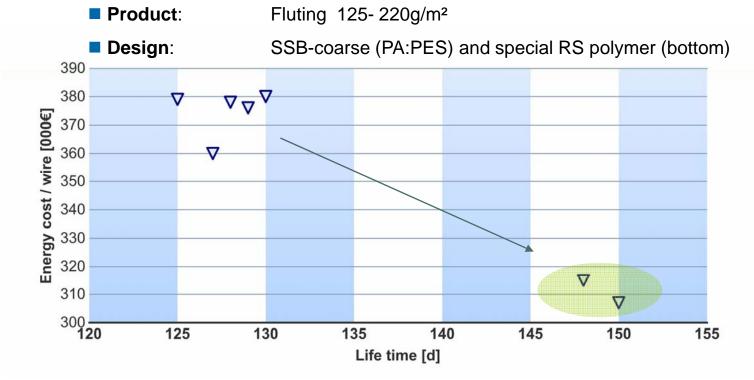
The friction between the running side material and the dewatering elements has a direct impact on the friction force and hereby on the drag load

→ Both parameters together result in the friction force and determine the Energy consumption

Description of the situation/target

Laboratory trials

New product development

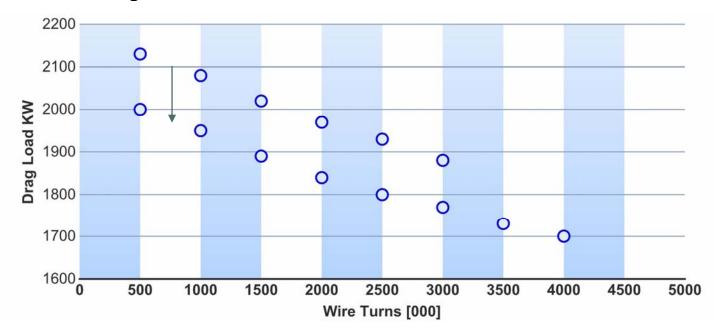


- Field results
- Summary

Field trial No 1 - New RS material

New running side Polymer

- ~25% Energy savings in that particular case
- Fabric life was increased about 27% at the same time
- → \$ savings due to the Drive energy reduction and less fabric consumtion



Field trial No 2 – Fabric structure

Engineered drainage channels

■ **Product**: News, Telephone directory 38-60 g/m²

Design: EDC-fine

■ 5% Drive energy savings due to an improved sheet built up

Description of the situation/target

Laboratory trials

New product development

Field results

Summary

Summary

- There are many forming fabric parameters which are related to the energy consumption of the wet end. These parameters divide into 2 major groups:
 - Energy saving two to less vacuum load, influenced by the sheet formation in the initial drainage zone
 - Friction of the wire over the dewatering elements, many impacted by the forming running side structure and the used materials
- Field evaluations show a huge saving potential up to 30% of the drive load in the wet end.

